Transformando el aprendizaje de las fracciones como operador: una comparación entre representaciones pictóricas y métodos memorísticos en educación secundaria
PDF

Palabras clave

Representación pictórica
educación secundaria
fracción como operador
conocimiento conceptual
conocimiento procedimental
pictorial representation
secondary education
fraction as operator
conceptual knowledge
procedural knowledge

Cómo citar

Sanz, M. T., Valenzuela García, C., & López-Iñesta, E. (2026). Transformando el aprendizaje de las fracciones como operador: una comparación entre representaciones pictóricas y métodos memorísticos en educación secundaria. CPU-E, Revista De Investigación Educativa, 1(42). https://doi.org/10.25009/cpue.v1i42.2908

Resumen

Se presenta un estudio experimental y exploratorio abordando la dificultad de los estudiantes para comprender el significado operatorio de la fracción, especialmente en la resolución de problemas y ejercicios algorítmicos. Dada la escasa presencia de enfoques visuales en la enseñanza tradicional, se analiza la importancia de las representaciones pictóricas en el aprendizaje de la fracción como operador. La investigación se realizó con estudiantes de secundaria de 14 a 15 años, organizados en un grupo experimental (42 estudiantes) y un grupo control (19 estudiantes). El experimental trabajó con modelos lineales y de área para apoyar la resolución de problemas, mientras que el control recibió únicamente explicaciones aritméticas. Se aplicaron un pretest y postest con elementos isomorfos, se analizaron cualitativa y cuantitativamente para evaluar conocimientos procedimentales y conceptuales. Aunque el grupo control presentaba mayores habilidades iniciales, el experimental obtuvo mejores resultados, mostrando que la representación pictórica favorece la comprensión y el aprendizaje.

 

Revolutionizing fraction as operator learning revolutionizing fraction as operator learning: comparing pictorial representations vs. memoristic approaches in secondary education

 

Abstract

An experimental and exploratory study is presented addressing students’ difficulty in understanding the operator meaning of fractions, especially in problem solving and algorithmic exercises. Given the limited presence of visual approaches in traditional instruction, the study examines the importance of pictorial representations in learning fractions as operators. The research was conducted with secondary students aged 14 to 15, organized into an experimental group (42 students) and a control group (19 students). The experimental group worked with linear and area models to support problem solving, while the control group received only arithmetic explanations. A pretest and posttest with isomorphic items were administered, and qualitative and quantitative analyses were carried out to evaluate procedural and conceptual knowledge. Although the control group initially showed higher skills, the experimental group achieved better results, indicating that pictorial representation enhances understanding and learning.

https://doi.org/10.25009/cpue.v1i42.2908
PDF

Citas

Adu-Gyamfi, K., Schwartz, C. S., Sinicrope, R., & Bossé, M. J. (2019). Making sense of fraction division: domain and representation knowledge of preservice elementary teachers on a fraction division task. Mathematics Education Research Journal, 31, 507-528. https://doi.org/10.1007/s13394-019-00265-2

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001

Alamolhoda, M., Taghi, S. M., & Bagheri, Z. (2017). A comparative study of the impacts of unbalanced sample sizes on the four synthesized methods of meta-analytic structural equation modeling. BMC Research Notes, 10(1), 1-12. https://doi.org/10.1186/s13104-017-2768-5

Álvarez, E. (1936). El ejercicio de los problemas. Problemas elementales de Matemáticas, Física y Química. Instituto Samper.

Behr, M., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and proportion. En D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 296-333). The National Council of Teachers of Mathematics.

Behr, M., Harel, G., Post, T., & Lesh, R. (1993). Rational Numbers: Toward a Semantic Analysis-Emphasis on the Operator Construct. En T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational Numbers: An Integration of Research (pp. 13-47). Routledge.

Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A computational model of fraction arithmetic. Psychological Review, 124(5), 603-625. https://doi.org/10.1037/rev0000072

Brown, M. (1981). Number operations. En K. Hart (Ed.), Children’s Understanding of Mathematics: 11-16 (pp. 23-47). Murray.

Bruner, J. S. (1966). Toward a theory of instruction. Belknap Press of Harvard University.

Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777–786. https://doi.org/10.1037/0012-1649.27.5.777

Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293-316. https://doi.org/10.1007/s10649-006-9036-2

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2a ed.). Lawrence Erlbaum Associates.

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61, 103–131. https://doi.org/10.1007/s10649-006-0400-z

Figueras, O. (1988). Dificultades de aprendizaje en dos modelos de enseñanza de los racionales [Disertación doctoral inédita]. Instituto Politécnico Nacional.

Geary, D. C., Saults, S. J., Liu, F., & Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77(4), 337–353. https://doi.org/10.1006/jecp.2000.2594

Gesuelli, K.-A., & Jordan, N. C. (2024). Fraction arithmetic development: An examination of students’ patterns of growth and errors across the intermediate grades. Journal of Educational Psychology, 116(3), 377–395. https://doi.org/10.1037/edu0000828

Gómez, B., Sanz, M. T., & Huerta, I. (2016). Problemas descriptivos de fracciones. Bolema: Boletim de Educação Matemática, 30(55), 586-604. https://doi.org/10.1590/1980-4415v30n55a14

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177. https://doi.org/10.1207/s15327833mtl0102_4

Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and procedural knowledge when learning fractions. Journal of Educational Psychology, 102(2), 395-406. https://doi.org/10.1037/a0017486

Hart, K. (1981). Fractions. En K. Hart (Ed.), Children’s understying of mathematics: 11-16 (pp. 66-81). Murray.

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037/0022-0663.91.4.684

Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59–78. https://doi.org/10.1007/BF01284528

Kieren, T. E. (1988). Personal Knowledge of Rational Numbers: Its Intuitive and Formal Development. En J. Hiebert & M. Behr (Eds.), Number Concepts and Operations in the Middle Grades, Volume 2 (pp. 162-181). Lawrence Erlbaum Associates.

Lamon, S. J. (2020). Teaching Fractions and Ratios for Understanding. Essential Content knowledge and Instructional Strategies for Teachers (4a ed.). Routledge.

Lee, H. J., & Boyadzhiev, I. (2020). Underprepared College Students’ Understanding of and Misconceptions with Fractions. International Electronic Journal of Mathematics Education, 15(3), 1-12. https://doi.org/10.29333/iejme/7835

Lesh, R., Post, T., & Behr, M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. En C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 33-40). Lawrence Erlbaum Associates.

Lizasoain, L. (2024). El análisis estadístico de datos en la investigación educativa. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(2), 217–232. https://doi.org/10.6018/reifop.608261

Llinares, S., & Sánchez, M. V. (1988). Fracciones: la relación parte-todo. Síntesis.

Mendoza, T. (2018). Aprender del problema y de las formas de interacción. La construcción de conocimientos relativos al porcentaje en clases de secundaria. Revista Colombiana de Educación, 74, 133-154. https://doi.org/10.17227/rce.num74-6901

Murillo, L., & Ceballos, A. (2013). Las prácticas de enseñanza empleadas por docentes de matemáticas y su relación con la resolución de problemas mediados por fracciones. Revista Científica, 17(2), 244-248. https://revistas.udistrital.edu.co/index.php/revcie/article/view/6553/8078

Parra, M. Á., & Flores, R. (2008). Aprendizaje cooperativo en la solución de problemas con fracciones. Educación Matemática, 20(1), 31-52. https://doi.org/10.24844/EM2002.02

Petit, M. M., Laird, R. E., Ebby, C. B., & Marsden, E. L. (2015). A Focus on Fractions. Bringing research to the classroom (2a ed.). Routledge. https://doi.org/10.4324/9781315746098

Ploetzner, R. (2012). Pictorial Representations and Learning. En N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning (pp. 2636-2638). Springer. https://doi.org/10.1007/978-1-4419-1428-6_308

Pool-Dzul, J. L. (2018). “Resolución de problemas aditivos y multiplicativos al usar fracciones en forma gráfica”. Perspectivas docentes, 29(67), 25-39. https://revistas.ujat.mx/index.php/perspectivas/article/view/3701

Resnick, I., Harris, D., Logan, T., & Lowrie, T. (2020). The relation between mathematics achievement and spatial reasoning. Mathematics Education Research Journal, 32, 171–174. https://doi.org/10.1007/s13394-020-00338-7

Ríos-Cuesta, W. (2021). Aplicación de las representaciones gráficas y la visualización a la resolución de problemas con fracciones: una transición hacia el algoritmo. Revista Virtual Universidad Católica del Norte, 63, 196-222. https://doi.org/10.35575/rvucn.n63a8

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346-362. https://doi.org/10.1037//0022-0663.93.2.346

Sanz, M. T., Figueras, O., & Gómez, B. (2018). Las fracciones, habilidades de alumnos de 15 a 16 años. Revista de Educación de la Universidad de Granada, 25, 257-279. https://doi.org/10.30827/reugra.v25i0.125

Sanz, M. T., López-Iñesta, E., Garcia, D., & Grimaldo, F. (2021). Complexity of word problems through its reading in students and prospective teachers. En D. Olanoff, K. Johnson, & S. Spitzer, (Eds.), Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1723-1727). https://www.pmena.org/pmenaproceedings/PMENA%252043%25202021%2520Proceedings.pdf

Sherin, M. G. (2010). When teaching becomes learning. Cognition and Instruction, 20(2), 119–150. https://doi.org/10.1207/S1532690XCI2002_1

Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5a ed.). Chapman & Hall/CRC.

Siegler, R. S., Thompson, C., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296. https://doi.org/10.1016/j.cogpsych.2011.03.001

Smidt, S., & Weiser, W. (1995). Semantic structures of one-step word problems involving multiplication or division. Educational Studies in Mathematics, 28, 55-72. https://doi.org/10.1007/BF01273856

Stylianou, D. A. (2010). Teachers’ conceptions of representation in middle school mathematics. Journal of Mathematics Teacher Education, 13(4), 325–343. https://doi.org/10.1007/s10857-010-9143-y

Valenzuela, C. (2018). Modelo de enseñanza para fracciones basado en la recta numérica y el uso de applets: estudio en comunidades marginadas [Tesis Doctoral, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional]. https://www.researchgate.net/publication/332471696_MODELO_DE_ENSENANZA_PARA_FRACCIONES_BASADO_EN_LA_RECTA_NUMERICA_Y_EL_USO_DE_APPLETS_ESTUDIO_EN_COMUNIDADES_MARGINADAS

van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic Mathematics Education. En S. Lerman (Ed.), Encyclopedia of Mathematics Education (2ª ed., pp. 521-525). Springer. https://scienceclopedia.wordpress.com/wp-content/uploads/2013/09/encyclopedia-realistic-mathematics-education_ref.pdf

van Essen, G., & Hamaker, C. (1990). Using self-generated drawings to solve arithmetic word problems. The Journal of Educational Research, 83(6), 301-312. https://doi.org/10.1080/00220671.1990.10885976

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2025 Maria T. Sanz, Carlos Valenzuela García, Emilia López-Iñesta